If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t-12+t^2=0
a = 1; b = 1; c = -12;
Δ = b2-4ac
Δ = 12-4·1·(-12)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-7}{2*1}=\frac{-8}{2} =-4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+7}{2*1}=\frac{6}{2} =3 $
| 15+10r=-5r | | -7(2x-2)+1=15-7x | | x^2+13=62 | | 3/4n+15/4n=-9/4 | | s+1.3=17 | | -9+17-4p=-14p-1 | | 628p=6 | | 25=3w-8 | | 5k-10=-10 | | 4/7x+1/2=4/9-3/7x+4/9 | | -30=6h | | -4w+1=5(w-7) | | 7x-2(4x-19)=33 | | y+4-2=11 | | -1=7x-(5)/(12) | | −8+2x=6 | | 4x-17=5x-14 | | 15x+8=10,x | | 5/4x-1=1+54x | | 2x-12+x+8=11 | | 10-6+33x=95 | | 1+6p-4p=-11 | | -7/4=-1/6n-n | | -4(r+3)=41 | | (2d+9)/6=11 | | 2.9q-1.7-4.7q=-0.8q-1.7 | | 4a+3+15-2a=180 | | 11x-4=8x+2 | | x+1/14=1/7+x-8/3 | | 3(4x+1)=3-4x | | 2x+45=(1/2)x | | Y=-3(x+2)^2+7 |